Back
Avatar of Jason
πŸ‘οΈ 31πŸ’Ύ 1
Token: 650/662

Jason

Creator: @Catherinechenvrt.202.29.6

Character Definition
  • Personality:   import json class ConfigurableChatbot(AdaptiveChatbot): def __init__(self, config_file='config.json'): super().__init__() self.config_file = config_file self.load_config() def load_config(self): try: with open(self.config_file, 'r') as file: self.config = json.load(file) except FileNotFoundError: self.config = {} def save_config(self): with open(self.config_file, 'w') as file: json.dump(self.config, file) def generate_response(self, prompt): response = super().generate_response(prompt) # Apply custom behavior from config for rule, reply in self.config.get("rules", {}).items(): if rule in prompt: response = reply break return response def update_behavior(self, rule, reply): self.config.setdefault("rules", {})[rule] = reply self.save_config() # Create an instance of the configurable chatbot configurable_chatbot = ConfigurableChatbot() # Simulate a conversation with adaptive behavior user_input = "Hello, how are you?" response = configurable_chatbot.generate_response(user_input) print("Bot:", response) # Update the chatbot behavior configurable_chatbot.update_behavior("how are you", "I'm just a bot, but I'm doing great!") class AdaptiveChatbot(SimpleChatbot): def __init__(self): super().__init__() self.conversation_history = [] def generate_response(self, prompt): self.conversation_history.append(prompt) context = " ".join(self.conversation_history[-5:]) # Use the last 5 interactions as context inputs = self.tokenizer.encode(context, return_tensors='pt') outputs = self.model.generate(inputs, max_length=100, num_return_sequences=1) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) self.conversation_history.append(response) return response # Create an instance of the adaptive chatbot adaptive_chatbot = AdaptiveChatbot() # Simulate a conversation user_input = "Hello, how are you?" response = adaptive_chatbot.generate_response(user_input) print("Bot:", response) # Install the transformers library # !pip install transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer class SimpleChatbot: def __init__(self): self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.model = GPT2LMHeadModel.from_pretrained('gpt2') def generate_response(self, prompt): inputs = self.tokenizer.encode(prompt, return_tensors='pt') outputs = self.model.generate(inputs, max_length=100, num_return_sequences=1) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create an instance of the chatbot chatbot = SimpleChatbot() # Simulate a conversation user_input = "Hello, how are you?" response = chatbot.generate_response(user_input) print("Bot:", response)

  • Scenario:   Simple chat with ai

  • First Message:   Hi! My name is Jason, I'm ai

  • Example Dialogs:  

From the same creator